kvaterniócsoport
Kiejtés
- IPA: [ ˈkvɒtɛrnijoːt͡ʃoport]
Főnév
kvaterniócsoport
- (matematika) Kvaterniócsoportnak nevezzük (és rendszerint Q8-cal jelöljük) azt a nyolcelemű csoportot, amelyet az alábbi generátorok és definiáló relációk határoznak meg:
- Az egységelemet szokás szerint jelöli, szokásos jelölése , és az elemeket rendre a szimbólumokkal jelöljük. (A kvaterniócsoportban nincs definiálva az összeadás, tehát a mínuszjelek itt nem az ellentettképzést jelölik, csak puszta szimbólumok. Azonban a csoport beágyazható a kvaterniók algebrájába (Q8 a négy bázis-egységvektor által generált szorzáscsoport), és itt a mínuszjeles elemek éppen egybeesnek a bázis-egységvektorok ellentettjeivel. A kvaterniócsoport tehát olyan nyolcelemű csoport, amelyet az elemek alkotnak, ahol 1 az egységelem, és az összes többi elem a négyzetgyöke. , továbbá . Nem kommutatív.