vektoriális szorzat
Kiejtés
- IPA: [ ˈvɛktorijaːliʃsorzɒt]
Főnév
A vektoriális szorzat (más néven külső szorzat vagy keresztszorzat) háromdimenziós vektorokkal végzett olyan művelet, amelynek eredménye egy vektor. Míg a vektorok (és a rajtuk végzett műveletek közül például a skaláris szorzat) általánosíthatók több dimenzióra, a vektoriális szorzatot csak 3 dimenziós térben értelmezzük (7 dimenziós esetben is létezik vektoriális szorzat, ami azonban kevésbé használatos).
Jelölése: a×b vagy [ab] (szóban: a kereszt b)
Értelmezése:
- Az eredményvektor nagysága (abszolútértéke, hossza) a két vektor hosszának és a közbezárt szögük szinuszának szorzata (0° ≤ θ ≤ 180°).
- Az eredményvektor állása merőleges mind a-ra, mind b-re (az a és b vektorok síkjára).
- Az eredményvektor iránya olyan, hogy az a, b és c jobbsodrású vektorrendszert alkot.
- (Egy a, b, c vektorrendszert akkor hívunk jobbsodrásúnak, ha a jobb kezünk beállítható úgy, hogy hüvelykujjunk a-val, mutatóujjunk b-vel, középső ujjunk pedig (az előbbi két ujjunkra merőlegesen) c-vel azonos irányba mutat.)
Derékszögű koordináta-rendszerben a c eredményvektor koordinátáit a következőképp kapjuk a és b koordinátáiból:
Ha elképzelünk egy paralelogrammát, aminek szomszédos oldalait az a és b vektorok alkotják, akkor a×b nagysága (tehát az eredményvektor hossza) éppen megegyezik a két vektor által kifeszített paralelogramma területével.
Két vektor vektoriális szorzata akkor és csak akkor nullvektor, ha párhuzamos állásúak, hiszen ekkor a bezárt 0° vagy 180°, amiknek szinusza 0. Akkor lesz leghosszabb az eredményvektor, ha derékszögben állnak egymáshoz képest az összeszorzandó vektorok (mert 90° szinusza 1).
Fordítások
- angol: vector product (en), cross product (en)
- francia: produit vectoriel (fr)
- német: Vektorprodukt (de), Kreuzprodukt (de)
- orosz: векторное произведение (ru) (vektornoje proizvedenije)
Lásd még
- vektoriális szorzat - Értelmező szótár (MEK)
- vektoriális szorzat - Etimológiai szótár (UMIL)
- vektoriális szorzat - Szótár.net (hu-hu)
- vektoriális szorzat - DeepL (hu-de)
- vektoriális szorzat - Яндекс (hu-ru)
- vektoriális szorzat - Google (hu-en)
- vektoriális szorzat - Helyesírási szótár (MTA)
- vektoriális szorzat - Wikidata
- vektoriális szorzat - Wikipédia (magyar)