Riemann-féle zéta-függvény

Kiejtés

  • IPA: [ ˈrijɛmɒɱfeːlɛzeːtɒfyɡveːɲ]

Főnév

Riemann-féle zéta-függvény

  1. (matematika) A Riemann-féle zéta-függvény a számelmélet, ezen belül az analitikus számelmélet legfontosabb komplex változós függvénye. Különböző tulajdonságai szorosan összefüggenek a prímszámok eloszlásának kérdéseivel. A nemtriviális zérushelyeire vonatkozó Riemann-sejtés sokak szerint a matematika legfontosabb megoldatlan problémája.
Definíció

A Riemann-féle ζ(s) függvényt a

 

Dirichlet-sorral definiáljuk ott, ahol ez konvergens, azaz az 1-nél nagyobb valós résszel rendelkező komplex s értékekre. (Az analitikus számelméletben a komplex számokat hagyományosan s=σ+it alakban írják.)

ζ(s) analitikus folytatással az egész síkon meromorf függvénnyé terjeszthető ki, az alábbi módon:

 

Aminek egyetlen elsőrendű pólusa 1-ben van, az s=-2, -4, … ( ahol a szinusz nulla, és a gamma-függvény véges értéket vesz fel) helyeken zérushelyei vannak, továbbá végtelen sok zérushelye van a   sávban. Ez az úgynevezett kritikus sáv.