Kiejtés

  • IPA: [ ˈmomɛntum]

Főnév

momentum

  1. (matematika, valószínűségszámítás) A valószínűségszámításban egy valószínűségi változó momentumai több, a változó eloszlását jellemző számértéket is takarnak. Általánosan az X valószínűségi változó k-adik momentuma bármely k pozitív egész szám esetén az E(Xk) által felvett értékként határozható meg (feltéve, hogy ez az érték létezik), ahol E(X) az X várható értékét jelöli.

Az X valószínűségi változó k-adik momentumának jelölését tekintve a szakirodalom nem egységes. Sok esetben – a várható értéktől, szórástól, ferdeségtől vagy lapultságtól eltérően – nem szoktak külön jelölést bevezetni, hanem kiírják az E(Xk)-t. Találkozhatunk helyenként a μk = E(Xk) jelöléssel, más könyvekben viszont a μk a centrális momentumot jelöli.

Az eloszlásfüggvényt momentumainak sorozata meghatározza, amennyiben a momentumgeneráló függvény konvergens. Az előre megadott momentumokkal bíró eloszlás meghatározása a momentumprobléma, ami fontos a technikai mechanikában.

Vannak eloszlások, amelyeknek csak véges sok momentuma létezik. Ide tartoznak a t-eloszlások, amelyeknek csak olyan rendű momentumai vannak, amelyek kisebbek a szabadsági fokánál. Speciálisan, a Cauchy-eloszlás esetén már első momentum, a várható érték sincs; ugyanez a helyzet a Lévy-eloszlással.

Definíció

Legyen   valószínűségi változó, és   természetes szám. Ekkor    -adrendű momentuma vagy  -adik momentuma    ‑-adik hatványának várható értéke, feltéve, hogy az létezik:

 

   -adik abszolút momentuma az   abszolútérték  -adik hatványának várható értéke:

 

Elméleti vizsgálatokban a   nem feltétlenül egész, ilyenkor  -val jelölik. Bizonyos rendű momentumok létezése az egész eloszlást jellemzi általánosan. Az első momentum a várható érték. Gyakori jelölése:  , és az eloszlás középértékének tekinthető.

Valós valószínűségi változó momentumai

Legyen   az   valószínűségi mezőn értelmezve és eloszlásfüggvénye  . Ekkor a momentumok kifejezhetők Stieltjes-integrállal a várható érték definíciója alapján:

 .

Ha   abszolút folytonos valószínűségi változó, és sűrűségfüggvénye  , akkor:

 ,

Diszkrét valószínűségi változó esetén, aminek értékei   és valószínűségei  :

 .

A   valószínégi mérték szerinti Lebesgue-integrállal ezek egységesen:

 .

Centrális momentumok

A fent definiált momentumok mellett centrális momentumokat is értelmeznek, amelyek figyelembe veszik a várható értéket is.

 

és

 

Az első abszolút centrális momentum a standard abszolút eltérés:

 

A második centrális momentum a szórásnégyzet:

 

A harmadikból és a negyedikből számítják a ferdeséget és a lapultságot. A ferdeség a szimmetrikustól való eltérést, a lapultság az eloszlás alakját jellemzi. Magasabb momentumoknak is nevezik őket.

Momentumok, karakterisztikus függvény és kumulánsok

A karakterisztikus függvény képletének többszörös deriválásával kifejezhetjük a közönséges momentumokat a karakterisztikus függvénnyel

 

A momentumgeneráló függvényből is megkaphatók a momentumok. A  -adik momentum kifejezhető az első   kumuláns   polinomjaként. Ez éppen a    -adik teljes Bell-polinom:

 .

Markov-egyenlőtlenség

A momentumok jelentőségét a Markov-egyenlőtlenség világítja meg:

Ha az   valószínűségi változónak létezik a  -adik   abszolút momentuma, akkor

 ,

ami a nagy abszolút értékű értékekről tesz kijelentést. Speciálisan, ha  , akkor a becslés a szórásnégyzetről szól:

 ,

a Csebisev-egyenlőtlenség, ami a nagy eltéréseket becsli.

Közös momentumok

A momentum fogalma kiterjeszthető több valószínűségi változó esetére. Ha   és   valószínűségi változó, akkor közös momentumaik

 

ahol   közös sűrűségfüggvény.

A centrális közös momentumok hasonlóan definiálhatók:

 .

Ahol   az   és   kovarianciája.

Számítás

A momentumok számításához a first-order second-moment eljárás ad közelítő eredményt.

További momentumok

A valószínűségszámításban és a matematikai statisztikában más momentumok is előfordulnak, ezek közül a legfontosabbak:

A momentum speciális esete a kezdeti momentum, melyet a centrális momentum definiálása kapcsán szoktak bevezetni.